Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Front Med (Lausanne) ; 11: 1361317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572163

RESUMO

Introduction: Databases used for clinical interpretation in oncology rely on genetic data derived primarily from patients of European ancestry, leading to biases in cancer genetics research and clinical practice. One practical issue that arises in this context is the potential misclassification of multi-ancestral population variants as tumor-associated because they are not represented in reference genomes against which tumor sequencing data is aligned. Methods: To systematically find misclassified variants, we compared somatic variants in census genes from the Catalogue of Somatic Mutations in Cancer (COSMIC) V99 with multi-ancestral population variants from the Genome Aggregation Databases' Linkage Disequilibrium (GnomAD). By comparing genomic coordinates, reference, and alternate alleles, we could identify misclassified variants in genes associated with cancer. Results: We found 192 of 208 genes in COSMIC's cancer-associated census genes (92.31%) to be associated with variant misclassifications. Among the 1,906,732 variants in COSMIC, 6,957 variants (0.36%) aligned with normal population variants in GnomAD, concerning for misclassification. The African / African American ancestral population included the greatest number of misclassified variants and also had the greatest number of unique misclassified variants. Conclusion: The direct, systematic comparison of variants from COSMIC for co-occurrence in GnomAD supports a more accurate interpretation of tumor sequencing data and reduces bias related to genomic ancestry.

2.
Front Immunol ; 15: 1335307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633260

RESUMO

Introduction: Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods: To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results: A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion: Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.


Assuntos
Mordeduras e Picadas de Insetos , Phlebotomus , Animais , Humanos , Phlebotomus/parasitologia , Leucócitos Mononucleares , Imunidade Celular , Antígenos , Imunoglobulina G , Proteínas e Peptídeos Salivares
3.
NPJ Precis Oncol ; 8(1): 68, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480868

RESUMO

We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts. We further identified that polycomb complex protein BMI-1 is elevated in HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.

4.
Sci Rep ; 14(1): 5006, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438404

RESUMO

A combination of improved body armor, medical transportation, and treatment has led to the increased survival of warfighters from combat extremity injuries predominantly caused by blasts in modern conflicts. Despite advances, a high rate of complications such as wound infections, wound failure, amputations, and a decreased quality of life exist. To study the molecular underpinnings of wound failure, wound tissue biopsies from combat extremity injuries had RNA extracted and sequenced. Wounds were classified by colonization (colonized vs. non-colonized) and outcome (healed vs. failed) status. Differences in gene expression were investigated between timepoints at a gene level, and longitudinally by multi-gene networks, inferred proportions of immune cells, and expression of healing-related functions. Differences between wound outcomes in colonized wounds were more apparent than in non-colonized wounds. Colonized/healed wounds appeared able to mount an adaptive immune response to infection and progress beyond the inflammatory stage of healing, while colonized/failed wounds did not. Although, both colonized and non-colonized failed wounds showed increasing inferred immune and inflammatory programs, non-colonized/failed wounds progressed beyond the inflammatory stage, suggesting different mechanisms of failure dependent on colonization status. Overall, these data reveal gene expression profile differences in healing wounds that may be utilized to improve clinical treatment paradigms.


Assuntos
Qualidade de Vida , Ferida Cirúrgica , Humanos , Amputação Cirúrgica , Redes Reguladoras de Genes , Extremidades
5.
iScience ; 27(3): 109198, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439970

RESUMO

Numerous multi-omic investigations of cancer tissue have documented varying and poor pairwise transcript:protein quantitative correlations, and most deconvolution tools aiming to predict cell type proportions (cell admixture) have been developed and credentialed using transcript-level data alone. To estimate cell admixture using protein abundance data, we analyzed proteome and transcriptome data generated from contrived admixtures of tumor, stroma, and immune cell models or those selectively harvested from the tissue microenvironment by laser microdissection from high grade serous ovarian cancer (HGSOC) tumors. Co-quantified transcripts and proteins performed similarly to estimate stroma and immune cell admixture (r ≥ 0.63) in two commonly used deconvolution algorithms, ESTIMATE or ConsensusTME. We further developed and optimized protein-based signatures estimating cell admixture proportions and benchmarked these using bulk tumor proteomic data from over 150 patients with HGSOC. The optimized protein signatures supporting cell type proportion estimates from bulk tissue proteomic data are available at https://lmdomics.org/ProteoMixture/.

6.
Biol Psychiatry ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38141912

RESUMO

BACKGROUND: Suicide is a societal and public health concern of global scale. Identifying genetic risk factors for suicide attempt can characterize underlying biology and enable early interventions to prevent deaths. Recent studies have described common genetic variants for suicide-related behaviors. Here, we advance this search for genetic risk by analyzing the association between suicide attempt and uncommon variation exome-wide in a large, ancestrally diverse sample. METHODS: We sequenced whole genomes of 13,584 soldiers from the Army STARRS (Army Study to Assess Risk and Resilience in Servicemembers), including 979 individuals with a history of suicide attempt. Uncommon, nonsilent protein-coding variants were analyzed exome-wide for association with suicide attempt using gene-collapsed and single-variant analyses. RESULTS: We identified 19 genes with variants enriched in individuals with history of suicide attempt, either through gene-collapsed or single-variant analysis (Bonferroni padjusted < .05). These genes were CIB2, MLF1, HERC1, YWHAE, RCN2, VWA5B1, ATAD3A, NACA, EP400, ZNF585A, LYST, RC3H2, PSD3, STARD9, SGMS1, ACTR6, RGS7BP, DIRAS2, and KRTAP10-1. Most genes had variants across multiple genomic ancestry groups. Seventeen of these genes were expressed in healthy brain tissue, with 9 genes expressed at the highest levels in the brain versus other tissues. Brains from individuals deceased from suicide aberrantly expressed RGS7BP (padjusted = .035) in addition to nominally significant genes including YWHAE and ACTR6, all of which have reported associations with other mental disorders. CONCLUSIONS: These results advance the molecular characterization of suicide attempt behavior and support the utility of whole-genome sequencing for complementing the findings of genome-wide association studies in suicide research.

7.
Gynecol Oncol ; 177: 60-71, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639904

RESUMO

OBJECTIVE: ATR kinase inhibitors promote cell killing by inducing replication stress and through potentiation of genotoxic agents in gynecologic cancer cells. To explore mechanisms of acquired resistance to ATRi in ovarian cancer, we characterized ATRi-resistant ovarian cancer cells generated by metronomic dosing with the clinical ATR inhibitor AZD6738. METHODS: ATRi-resistant ovarian cancer cells (OVCAR3 and OV90) were generated by dosing with AZD6738 and assessed for sensitivity to Chk1i (LY2603618), PARPi (Olaparib) and combination with cisplatin or a CDK4/6 inhibitor (Palbociclib). Models were characterized by diverse methods including silencing CDC25A in OV90 cells and assessing impact on ATRi response. Serum proteomic analysis of ATRi-resistant OV90 xenografts was performed to identify circulating biomarker candidates of ATRi-resistance. RESULTS: AZD6738-resistant cell lines are refractory to LY2603618, but not to Olaparib or combinations with cisplatin. Cell cycle analyses showed ATRi-resistant cells exhibit G1/S arrest following AZD6738 treatment. Accordingly, combination with Palbociclib confers resistance to AZD6738. AZD6738-resistant cells exhibit altered abundances of G1/S phase regulatory proteins, including loss of CDC25A in AZD6738-resistant OV90 cells. Silencing of CDC25A in OV90 cells confers resistance to AZD6738. Serum proteomics from AZD6738-resistant OV90 xenografts identified Vitamin D-Binding Protein (GC), Apolipoprotein E (APOE) and A1 (APOA1) as significantly elevated in AZD6738-resistant backgrounds. CONCLUSIONS: We show that metronomic dosing of ovarian cancer cells with AZD6738 results in resistance to ATR/ Chk1 inhibitors, that loss of CDC25A expression represents a mechanism of resistance to ATRi treatment in ovarian cancer cells and identify several circulating biomarker candidates of CDC25A low, AZD6738-resistant ovarian cancer cells.

8.
Cancers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900259

RESUMO

NSC243928 induces cell death in triple-negative breast cancer cells in a LY6K-dependent manner. NSC243928 has been reported as an anti-cancer agent in the NCI small molecule library. The molecular mechanism of NSC243928 as an anti-cancer agent in the treatment of tumor growth in the syngeneic mouse model has not been established. With the success of immunotherapies, novel anti-cancer drugs that may elicit an anti-tumor immune response are of high interest in the development of novel drugs to treat solid cancer. Thus, we focused on studying whether NSC243928 may elicit an anti-tumor immune response in the in vivo mammary tumor models of 4T1 and E0771. We observed that NSC243928 induced immunogenic cell death in 4T1 and E0771 cells. Furthermore, NSC243928 mounted an anti-tumor immune response by increasing immune cells such as patrolling monocytes, NKT cells, B1 cells, and decreasing PMN MDSCs in vivo. Further studies are required to understand the exact mechanism of NSC243928 action in inducing an anti-tumor immune response in vivo, which can be used to determine a molecular signature associated with NSC243928 efficacy. NSC243928 may be a good target for future immuno-oncology drug development for breast cancer.

9.
Cancer Lett ; 558: 216094, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805500

RESUMO

Lymphocyte antigen 6K (LY6K) is a small GPI-linked protein that is normally expressed in testes. Increased expression of LY6K is significantly associated with poor survival outcomes in many solid cancers, including cancers of the breast, ovary, gastrointestinal tract, head and neck, brain, bladder, and lung. LY6K is required for ERK-AKT and TGF-ß pathways in cancer cells and is required for in vivo tumor growth. In this report, we describe a novel role for LY6K in mitosis and cytokinesis through aurora B kinase and its substrate histone H3 signaling axis. Further, we describe the structural basis of the molecular interaction of small molecule NSC243928 with LY6K protein and the disruption of LY6K-aurora B signaling in cell cycle progression due to LY6K-NSC243928 interaction. Overall, disruption of LY6K function via NSC243928 led to failed cytokinesis, multinucleated cells, DNA damage, senescence, and apoptosis of cancer cells. LY6K is not required for vital organ function, thus inhibition of LY6K signaling is an ideal therapeutic approach for hard-to-treat cancers that lack targeted therapy such as triple-negative breast cancer.


Assuntos
Neoplasias , Feminino , Humanos , Antígenos Ly , Aurora Quinase B , Aurora Quinases , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Proteínas Ligadas por GPI , Linfócitos
10.
J Transl Med ; 20(1): 606, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528667

RESUMO

BACKGROUND: Low-grade serous ovarian cancer (LGSOC) is a rare disease that occurs more frequently in younger women than those with high-grade disease. The current treatment is suboptimal and a better understanding of the molecular pathogenesis of this disease is required. In this study, we compared the proteogenomic analyses of LGSOCs from short- and long-term survivors (defined as < 40 and > 60 months, respectively). Our goal was to identify novel mutations, proteins, and mRNA transcripts that are dysregulated in LGSOC, particularly in short-term survivors. METHODS: Initially, targeted sequencing of 409 cancer-related genes was performed on 22 LGSOC and 6 serous borderline ovarian tumor samples. Subsequently, whole-genome sequencing analysis was performed on 14 LGSOC samples (7 long-term survivors and 7 short-term survivors) with matched normal tissue samples. RNA sequencing (RNA-seq), quantitative proteomics, and phosphoproteomic analyses were also performed. RESULTS: We identified single-nucleotide variants (SNVs) (range: 5688-14,833 per sample), insertion and deletion variants (indels) (range: 880-1065), and regions with copy number variants (CNVs) (range: 62-335) among the 14 LGSOC samples. Among all SNVs and indels, 2637 mutation sites were found in the exonic regions. The allele frequencies of the detected variants were low (median12%). The identified recurrent nonsynonymous missense mutations included KRAS, NRAS, EIF1AX, UBR5, and DNM3 mutations. Mutations in DNM3 and UBR5 have not previously been reported in LGSOC. For the two samples, somatic DNM3 nonsynonymous missense mutations in the exonic region were validated using Sanger sequencing. The third sample contained two missense mutations in the intronic region of DNM3, leading to a frameshift mutation detected in RNA transcripts in the RNA-seq data. Among the 14 LGSOC samples, 7754 proteins and 9733 phosphosites were detected by global proteomic analysis. Some of these proteins and signaling pathways, such as BST1, TBXAS1, MPEG1, HBA1, and phosphorylated ASAP1, are potential therapeutic targets. CONCLUSIONS: This is the first study to use whole-genome sequencing to detect somatic mutations in LGSOCs with matched normal tissues. We detected and validated novel mutations in DNM3, which were present in 3 of the 14 samples analyzed. Additionally, we identified novel indels, regions with CNVs, dysregulated mRNA, dysregulated proteins, and phosphosites that are more prevalent in short-term survivors. This integrated proteogenomic analysis can guide research into the pathogenesis and treatment of LGSOC.


Assuntos
Cistadenocarcinoma Seroso , Dinamina III , Neoplasias Ovarianas , Feminino , Humanos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Dinamina III/genética , Multiômica , Mutação/genética , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Sobreviventes
11.
Cell Rep Med ; 3(11): 100819, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384096

RESUMO

We present a deep proteogenomic profiling study of 87 lung adenocarcinoma (LUAD) tumors from the United States, integrating whole-genome sequencing, transcriptome sequencing, proteomics and phosphoproteomics by mass spectrometry, and reverse-phase protein arrays. We identify three subtypes from somatic genome signature analysis, including a transition-high subtype enriched with never smokers, a transversion-high subtype enriched with current smokers, and a structurally altered subtype enriched with former smokers, TP53 alterations, and genome-wide structural alterations. We show that within-tumor correlations of RNA and protein expression associate with tumor purity and immune cell profiles. We detect and independently validate expression signatures of RNA and protein that predict patient survival. Additionally, among co-measured genes, we found that protein expression is more often associated with patient survival than RNA. Finally, integrative analysis characterizes three expression subtypes with divergent mutations, proteomic regulatory networks, and therapeutic vulnerabilities. This proteogenomic characterization provides a foundation for molecularly informed medicine in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteogenômica , Humanos , Proteômica , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , RNA/uso terapêutico
12.
Cancers (Basel) ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35625955

RESUMO

While BRCA1 and BRCA2 mutations are known to confer the largest risk of breast cancer and ovarian cancer, the incomplete penetrance of the mutations and the substantial variability in age at cancer onset among carriers suggest additional factors modifying the risk of cancer in BRCA1/2 mutation carriers. To identify genetic modifiers of BRCA1/2, we carried out a whole-genome sequencing study of 66 ovarian cancer patients that were enriched with BRCA carriers, followed by validation using data from the Pan-Cancer Analysis of Whole Genomes Consortium. We found PPARGC1A, a master regulator of mitochondrial biogenesis and function, to be highly mutated in BRCA carriers, and patients with both PPARGC1A and BRCA1/2 mutations were diagnosed with breast or ovarian cancer at significantly younger ages, while the mutation status of each gene alone did not significantly associate with age of onset. Our study suggests PPARGC1A as a possible BRCA modifier gene. Upon further validation, this finding can help improve cancer risk prediction and provide personalized preventive care for BRCA carriers.

13.
Nat Commun ; 13(1): 1361, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292633

RESUMO

In prostate cancer, emerging data highlight the role of DNA damage repair genes (DDRGs) in aggressive forms of the disease. However, DDRG mutations in African American men are not yet fully defined. Here, we profile germline mutations in all known DDRGs (N = 276) using whole genome sequences from blood DNA of a matched cohort of patients with primary prostate cancer comprising of 300 African American and 300 European Ancestry prostate cancer patients, to determine whether the mutation status can enhance patient stratification for specific targeted therapies. Here, we show that only 13 of the 46 DDRGs identified with pathogenic/likely pathogenic mutations are present in both African American and European ancestry patients. Importantly, RAD family genes (RAD51, RAD54L, RAD54B), which are potentially targetable, as well as PMS2 and BRCA1, are among the most frequently mutated DDRGs in African American, but not in European Ancestry patients.


Assuntos
Negro ou Afro-Americano , Neoplasias da Próstata , Negro ou Afro-Americano/genética , Dano ao DNA/genética , Mutação em Linhagem Germinativa , Humanos , Masculino , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
14.
iScience ; 25(1): 103665, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35036865

RESUMO

Characterization of ancestry-linked peptide variants in disease-relevant patient tissues represents a foundational step to connect patient ancestry with disease pathogenesis. Nonsynonymous single-nucleotide polymorphisms encoding missense substitutions within tryptic peptides exhibiting high allele frequencies in European, African, and East Asian populations, termed peptide ancestry informative markers (pAIMs), were prioritized from 1000 genomes. In silico analysis identified that as few as 20 pAIMs can determine ancestry proportions similarly to >260K SNPs (R2 = 0.99). Multiplexed proteomic analysis of >100 human endometrial cancer cell lines and uterine leiomyoma tissues combined resulted in the quantitation of 62 pAIMs that correlate with patient race and genotype-confirmed ancestry. Candidates include a D451E substitution in GC vitamin D-binding protein previously associated with altered vitamin D levels in African and European populations. pAIMs will support generalized proteoancestry assessment as well as efforts investigating the impact of ancestry on the human proteome and how this relates to the pathogenesis of uterine neoplasms.

15.
World J Biol Psychiatry ; 23(4): 295-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34664540

RESUMO

OBJECTIVES: Major Depressive Disorder (MDD) is a complex neuropsychiatric disease with known genetic associations, but without known links to rare variation in the human genome. Here we aim to identify rare genetic variants associated with MDD using deep whole-genome sequencing data in an independent population. METHODS: We report the sequencing of 1,688 whole genomes in a large sample of male-male Veteran twins. Depression status was classified based on a structured diagnostic interview according to DSM-III-R diagnostic criteria. Searching only rare variants in genomic regions from recent GWAS on MDD, we used the optimised sequence kernel association test and Fisher's Exact test to fine map loci associated with severe depression. RESULTS: Our analysis identified one gene associated with severe depression, basic helix loop helix e22 (PAdjusted = 0.03) via SKAT-O test between unrelated severely depressed cases compared to unrelated non-depressed controls. The same gene BHLHE22 had a non-silent variant rs13279074 (PAdjusted = 0.032) based on a single variant Fisher's Exact test between unrelated severely depressed cases compared to unrelated non-depressed controls. CONCLUSION: The gene BHLHE22 shows compelling genetic evidence of directly impacting the severe depression phenotype. Together these results advance understanding of the genetic contribution to major depressive disorder in a new cohort and link a rare variant to severe forms of the disorder.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Transtorno Depressivo Maior , Humanos , Masculino , Estudos de Coortes , Depressão , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Veteranos/psicologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
16.
Blood Cancer Discov ; 2(4): 319-325, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34258102

RESUMO

Genetic mutations associated with acute myeloid leukemia (AML) also occur in age-related clonal hematopoiesis, often in the same individual. This makes confident assignment of detected variants to malignancy challenging. The issue is particularly crucial for AML post-treatment measurable residual disease monitoring, where results can be discordant between genetic sequencing and flow cytometry. We show here, that it is possible to distinguish AML from clonal hematopoiesis and to resolve the immunophenotypic identity of clonal architecture. To achieve this, we first design patient-specific DNA probes based on patient's whole-genome sequencing, and then use them for patient-personalized single-cell DNA sequencing with simultaneous single-cell antibody-oligonucleotide sequencing. Examples illustrate AML arising from DNMT3A and TET2 mutated clones as well as independently. The ability to personalize single-cell proteogenomic assessment for individual patients based on leukemia-specific genomic features has implications for ongoing AML precision medicine efforts.


Assuntos
Leucemia Mieloide Aguda , Proteogenômica , Hematopoiese Clonal , Células Clonais/patologia , Humanos , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual
17.
Physiol Rep ; 9(11): e14886, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34086412

RESUMO

Cystic fibrosis (CF) is a life-limiting autosomal recessive genetic disease caused by variants in the CFTR gene, most commonly by the [F508del] variant. Although CF is a classical Mendelian disease, genetic variants in several modifier genes have been associated with variation of the clinical phenotype for pulmonary and gastrointestinal function and urogenital development. We hypothesized that whole genome sequencing of a well-phenotyped CF populations might identify novel variants in known, or hitherto unknown, modifier genes. Whole genome sequencing was performed on the Illumina HiSeq X platform for 98 clinically diagnosed cystic fibrosis patient samples from the Adult CF Clinic at the University of California San Diego (UCSD). We compared protein-coding, non-silent variants genome wide between CFTR [F508del] homozygotes vs CFTR compound heterozygotes. Based on a single variant score test, we found 3 SNPs in common variants (MAF >5%) that occurred at significantly different rates between homozygous [F508del]CFTR and compound heterozygous [F508del]CFTR patients. The 3 SNPs were all located in one gene on chromosome 2: Tensin 1 (TNS1: rs3796028; rs2571445: and rs918949). We observed significantly lower BMIs in homozygous [F508del]CFTR patients who were also homozygous for Tensin 1 rs918949 (T/T) (p = 0.023) or rs2571445 (G/G) (p = 0.02) variants. The Tensin 1 gene is thus a potential modifier gene for low BMI in CF patients homozygous for the [F508del]CFTR variant.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Tensinas/fisiologia , Magreza/genética , Adulto , Índice de Massa Corporal , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Tensinas/genética , Sequenciamento Completo do Genoma
18.
Front Neurosci ; 15: 636259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828448

RESUMO

Traumatic brain injury (TBI) results in complex pathological reactions, where the initial lesion is followed by secondary inflammation and edema. Our laboratory and others have reported that angiotensin receptor blockers (ARBs) have efficacy in improving recovery from traumatic brain injury in mice. Treatment of mice with a subhypotensive dose of the ARB candesartan results in improved functional recovery, and reduced pathology (lesion volume, inflammation and gliosis). In order to gain a better understanding of the molecular mechanisms through which candesartan improves recovery after controlled cortical impact injury (CCI), we performed transcriptomic profiling on brain regions after injury and drug treatment. We examined RNA expression in the ipsilateral hippocampus, thalamus and hypothalamus at 3 or 29 days post injury (dpi) treated with either candesartan (0.1 mg/kg) or vehicle. RNA was isolated and analyzed by bulk mRNA-seq. Gene expression in injured and/or candesartan treated brain region was compared to that in sham vehicle treated mice in the same brain region to identify genes that were differentially expressed (DEGs) between groups. The most DEGs were expressed in the hippocampus at 3 dpi, and the number of DEGs reduced with distance and time from the lesion. Among pathways that were differentially expressed at 3 dpi after CCI, candesartan treatment altered genes involved in angiogenesis, interferon signaling, extracellular matrix regulation including integrins and chromosome maintenance and DNA replication. At 29 dpi, candesartan treatment reduced the expression of genes involved in the inflammatory response. Some changes in gene expression were confirmed in a separate cohort of animals by qPCR. Fewer DEGs were found in the thalamus, and only one in the hypothalamus at 3 dpi. Additionally, in the hippocampi of sham injured mice, 3 days of candesartan treatment led to the differential expression of 384 genes showing that candesartan in the absence of injury had a powerful impact on gene expression specifically in the hippocampus. Our results suggest that candesartan has broad actions in the brain after injury and affects different processes at acute and chronic times after injury. These data should assist in elucidating the beneficial effect of candesartan on recovery from TBI.

19.
Clin Cancer Res ; 27(3): 831-842, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148669

RESUMO

PURPOSE: The objective of this study is to characterize the role of miRNAs in the classification of head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN: Here, we analyzed 562 HNSCC samples, 88 from a novel cohort and 474 from The Cancer Genome Atlas, using miRNA microarray and miRNA sequencing, respectively. Using an integrative correlations method followed by miRNA expression-based hierarchical clustering, we validated miRNA clusters across cohorts. Evaluation of clusters by logistic regression and gene ontology approaches revealed subtype-based clinical and biological characteristics. RESULTS: We identified two independently validated and statistically significant (P < 0.01) tumor subtypes and named them "epithelial" and "stromal" based on associations with functional target gene ontology relating to differing stages of epithelial cell differentiation. miRNA-based subtypes were correlated with individual gene expression targets based on miRNA seed sequences, as well as with miRNA families and clusters including the miR-17 and miR-200 families. These correlated genes defined pathways relevant to normal squamous cell function and pathophysiology. miRNA clusters statistically associated with differential mutation patterns including higher proportions of TP53 mutations in the stromal class and higher NSD1 and HRAS mutation frequencies in the epithelial class. miRNA classes correlated with previously reported gene expression subtypes, clinical characteristics, and clinical outcomes in a multivariate Cox proportional hazards model with stromal patients demonstrating worse prognoses (HR, 1.5646; P = 0.006). CONCLUSIONS: We report a reproducible classification of HNSCC based on miRNA that associates with known pathologically altered pathways and mutations of squamous tumors and is clinically relevant.


Assuntos
Biomarcadores Tumorais/análise , Redes Reguladoras de Genes , Neoplasias de Cabeça e Pescoço/diagnóstico , MicroRNAs/análise , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Análise por Conglomerados , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Mutação , Prognóstico , Medição de Risco/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Adulto Jovem
20.
ACS Pharmacol Transl Sci ; 3(5): 948-964, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33073193

RESUMO

Drug resistance is a constant threat to malaria control efforts making it important to maintain a good pipeline of new drug candidates. Of particular need are compounds that also block transmission by targeting sexual stage parasites. Mature sexual stages are relatively resistant to all currently used antimalarials except the 8-aminoquinolines that are not commonly used due to potential side effects. Here, we synthesized a new Torin 2 derivative, NCATS-SM3710 with increased aqueous solubility and specificity for Plasmodium and demonstrate potent in vivo activity against all P. berghei life cycle stages. NCATS-SM3710 also has low nanomolar EC50s against in vitro cultured asexual P. falciparum parasites (0.38 ± 0.04 nM) and late stage gametocytes (5.77 ± 1 nM). Two independent NCATS-SM3710/Torin 2 resistant P. falciparum parasite lines produced by growth in sublethal Torin 2 concentrations both had genetic changes in PF3D7_0509800, annotated as a phosphatidylinositol 4 kinase (Pf PI4KIIIß). One line had a point mutation in the putative active site (V1357G), and the other line had a duplication of a locus containing Pf PI4KIIIß. Both lines were also resistant to other Pf PI4K inhibitors. In addition NCATS-SM3710 inhibited purified Pf PI4KIIIß with an IC50 of 2.0 ± 0.30 nM. Together the results demonstrate that Pf PI4KIIIß is the target of Torin 2 and NCATS-SM3710 and provide new options for potent multistage drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...